# ROLINE Gigabit Switch 10-Port (8x RJ45+2x SFP) Layer2 PoE+ Smart Managed 

21.13.1137

Firmware Rev. 1.0 up

## User Manual

The information contained in this document is subject to change without prior notice. Copyright © All Rights Reserved.

## Table of Contents

1. Introduction ..... 3
1.1 Features ..... 4
1.2 Product Panels ..... 5
1.3 LED Indicators ..... 6
1.4 Specifications ..... 6
2. Installation ..... 8
2.1 Unpacking ..... 8
2.2 Safety Cautions ..... 8
2.3 DIN-Rail Mounting ..... 9
2.4 Panel Mounting ..... 11
2.5 Applying Power ..... 13
2.6 Alarm Relay Output ..... 14
2.7 Reset Button ..... 15
2.8 Establishing UTP Connections ..... 16
2.9 Establishing Fiber Connection ..... 17
2.10 Establishing PoE PSE Connections ..... 19
2.11 LED Indication ..... 20
2.12 Establishing a Console Connection ..... 21
3. Management of the Switch ..... 22
3.1 IP Address \& Password ..... 22
3.2 Configuring IP Address \& Password via console and telnet ..... 22
3.3 Configuring IP Address via Web Interface ..... 23
3.4 Configuration for SNMP Management ..... 26
3.5 SNMP MIBs ..... 27
3.5.1 SNMP Traps ..... 28
4. Redundant Ring Applications ..... 29
4.1 Auto Multi-Ring Technology ..... 29
4.2 Redundant Ring Applications with industrial standard RSTP protocol ..... 30

## 1. Introduction

21.13.1137 is a 10 -Port Industrial Managed Gigabit Ethernet Switch which is featured with the following communication ports:

- Eight $10 / 100 / 1000 \mathrm{Mbps}$ Gigabit copper ports with PoE function
- Two dual-speed SFP slots for 100Base-FX 1000Base-X
- One RS-232 console port



### 1.1 Features

Eight 10/100/1000Mbps RJ-45 and two dual-speed SFP slots

- All copper ports support auto-negotiation and auto-MDI/MDI-X detection.
- All copper ports are equipped with 802.3at-compliant PoE PSE.
- Two SFP slots support dual speed for 100BASE-FX and 1000BASE-X SFP transceivers.
- Full wire speed forwarding
- Supports $802.3 x$ flow control for full-duplex and backpressure for half-duplex
- Supports SFP with Digital Diagnostic Monitoring (DDM)
- Provides PoE PSE redundancy function
- Provides fiber Optical Power Alarm (OPA) function
- Provides Automatic Laser Shutdown (ALS) function
- Powered via typical industrial power voltage DC $12 \mathrm{~V}-30 \mathrm{~V}$
- Management:
- HTTP/HTTPS/SSHv2/CLI telnet/CLI console/SNMP v1/v2c/v3/RMON
- DHCP/DHCPv6 client, DHCP relay, DNS client, NTPv4
- IPv6 support, System Syslog, Configuration down/upload, Software upload
- Security:
- NAS, 802.1X, MAC-based/Web/CLI authentication
- IP MAC binding, TACACS+, IP source guard
- Layer 2:
- QoS, 802.1Q/MAC-based/Protocol-based/Private/IP subnet VLAN, Port Isolation
- Storm control for UC/MC/BC packets, Static MAC configuration
- IGMP v2/v3 snooping, MLD v1/v2 snooping, DHCP snooping
- Multiple Spanning Tree - MSTP. RSTP, STP
- Auto Multi-Ring (AMR) Technology:
- Fast failover response time
- Auto recovery when failure is repaired
- Supports up to five redundant rings
- Works with RSTP network
- Specific SNMP implementation:
- Private MIB for reading DDM status
- Private MIB for remote boot the device over SNMP
- Private MIB for TFTP firmware update over SNMP
- Private MIB for configuring OPA function
- Private MIB for configuring ALS function
- OPA alarm traps


### 1.2 Product Panels

The following figure illustrates the front panel and rear panel of the switch:


Front panel


Top panel

### 1.3 LED Indicators

| LED | Function |
| :--- | :--- |
| PWR | Power status |
| Mgt. | Management status |
| Port 1~8 SPEED LEDs | Speed \& PoE status |
| Port 1~8 LINK LEDs | Link \& activity status |
| SFP 9, 10 LEDs | Speed \& link \& activity status of SFP port |

### 1.4 Specifications

10/100/1000 Copper Ports (Port 1 ~Port 8)

| Compliance | IEEE 802.3 10Base-T, IEEE 802.3u 100Base-TX, IEEE 802.3u 1000Base-T |
| :--- | :--- |
| Connectors | Shielded RJ-45 jacks |
| Pin assignments | Auto MDI/MDI-X detection |
| Configuration | Auto-negotiation or software control |
| Transmission rate | $10 \mathrm{Mbps}, 100 \mathrm{Mbps}, 1000 \mathrm{Mbps}$ |
| Duplex support | Full/Half duplex |
| Network cable | Cat. 5 UTP |

## Dual-speed SFP Slots (Port 9, Port 10)

| Compliance | IEEE 802.3 u 100Base-FX |
| :--- | :--- |
|  | IEEE $802.3 \mathrm{z} \mathrm{1000Base-SX/LX} \mathrm{(mini-GBIC)}$ |
| Connectors | SFP for optional SFP type fiber transceivers |
| Configuration | Auto 1000 Mbps , Full duplex |
|  | Forced 100 Mbps , Full duplex |
| Transmission rate | 100 Mbps and 1000 Mbps |
| Network cables | MMF $50 / 12560 / 125$, SMF 9/125 |
| Eye safety | IEC 825 compliant |

## Console Port

Interface $\quad$ RS-232, DTE type, galvanic isolation

Connector Shielded RJ-45

## Switch Functions

MAC Addresses Table 8 K entries
Forwarding \& filtering Non-blocking, full wire speed
Switching technology Store and forward

| Power over Ethernet PSE Function |  |
| :--- | :--- |
| PSE Ports | Port $1 \sim$ Port 8 |
| Power output pins | Positive power voltage: pin 4,5 |
|  | Negative power voltage: pin 7,8 |
| Standard | IEEE 802.3 at |
| Classification | PD Class $0 \sim 4$ detection |
| Power Delivery | 30W max. (per port) at port output for Cat. 5 distance up to 100 meters |
| Output Voltage | $52 \mathrm{~V} \pm 3 \%$ at port output |
| Power Capacity | 90W shared by all ports |
| Protection | Under voltage protection |
|  | Over voltage protection |
|  | Over current detection |

## Terminal Block Connector

| DC power input | Screwed euro terminal block: DC +/- contacts |
| :--- | :--- |
| Operating Input Voltages | $+12 \sim+30 \mathrm{VDC}$ |
| Power consumption | 14 W max. @ 24 V (Full load with no PSE output) |
|  | 113 W max. @ 24 V (with full PoE output) |
| Alarm relay output | 3 terminal contacts (30VDC/1A max. or 120VAC/0.5A max.) |
|  | NC contacts: normal - shored, alarm - open |
|  | NO contacts: normal - open, alarm - shored |
| Alarm events | Power failure, Specific port link fault (software configured), OPA |

## Mechanical

| Dimension | $140 \times 106 \times 60 \mathrm{~mm}(\mathrm{HxDxW})$ |
| :--- | :--- |
| Housing | Enclosed metal with no fan |
| Mounting | Din-rail mounting, Panel mounting (optional) |

## Environmental

Operating Temperature Typical $-30^{\circ} \mathrm{C} \sim+60^{\circ} \mathrm{C}$ *
Storage Temperature $\quad-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$
Relative Humidity $\quad 5 \% \sim 90 \%$ non-condensing

## 2. Installation

### 2.1 Package content

The product package contains:

- The switch unit
- One product CD-ROM
- One console cable


### 2.2 Safety Cautions

To reduce the risk of bodily injury, electrical shock, fire and damage to the product, observe the following precautions:

|  | Do not service any product except as explained in your system documentation. |
| :--- | :--- |
|  | Opening or removing covers may expose you to electrical shock. |
|  | Only a trained service technician should service components. <br> If any of the following conditions occur, unplug the product from the electrical outlet and replace the <br> part or contact your trained service provider: <br> $-\quad$ The power cable, extension cable, or plug is damaged. <br> $-\quad$ An object has fallen into the product. <br> $-\quad$ The product has been exposed to water. <br> $-\quad$ The product has been dropped or damaged. <br> $-\quad$ The product does not operate correctly when you follow the operating instructions. |
|  |  |
|  | Operate the product only from the type of external power source indicated on the electrical ratings <br> label. If you are not sure of the type of power source required, consult your service provider or local <br> power company. |

### 2.3 DIN-Rail Mounting

In the product package, a DIN-rail bracket is provided for mounting the switch in an industrial DIN-rail enclosure.

The steps to mount the switch onto a DIN rail are:

1. Install the mounting bracket onto the switch unit as shown below:

2. Attach the bracket to the lower edge of the DIN rail and push the unit upward a little bit until the bracket can clamp on the upper edge of the DIN rail.
3. Clamp the unit to the DIN rail and make sure it is mounted securely.


Dimensions:


### 2.4 Panel Mounting

The panel mounting bracket supports mounting the switch on a plane surface securely.

The mounting steps are:

1. Install the mounting bracket on the switch unit.

2. Screw the bracket on the switch unit.
3. Screw the switch unit on a panel. The three screw locations are shown below:


Dimensions:


### 2.5 Applying Power

Alarm relay output is provided for reporting failure events to a remote alarm relay monitoring system. The relay output is provided with three contacts (supports two logic types) in the terminal block connector next Vdc interfaces.


Power pins of the terminal block connector

| Pin | 1 | + | Vdc Positive $(+)$ input terminal |
| :--- | :---: | :---: | :--- |
|  | 2 | - | Vdc Negative $(-)$ input terminal |

Vdc Input specifications

| Working voltage <br> range | Applications | Power output <br> at PSE port |
| :---: | :---: | :---: |
| $+12 \mathrm{~V} \sim+30 \mathrm{VDC}$ | General | - |
|  | PoE | $+52 \mathrm{~V}, 15.4 \mathrm{~W}$ max. |
|  | High power $\operatorname{PoE}(\mathrm{PoE}+)$ | $+52 \mathrm{~V}, 30 \mathrm{~W}$ max. |

A 2P terminal plug is provided together with the switch as shown below:


Power wires : $24 \sim 12 \mathrm{AWG}$ (IEC $0.5 \sim 2.5 \mathrm{~mm} 2$ ), 1 meter max.

### 2.6 Alarm Relay Output

Alarm relay output is provided for reporting failure events to a remote alarm relay monitoring system. The relay output is provided with three contacts (supports two logic types) in the terminal block connector next Vdc interfaces.


Alarm Relay output pins and logic:

| Pin | 3 | 4 | Alarm relay output, NO (Normal Open) contacts |
| :---: | :---: | :---: | :--- |
|  | NO | NO | Open: Normal, Shorted: Alarm |
| Pin | 4 | 5 | Alarm relay output, NC (Normal Closed) contacts |
|  | NC | NC | Shorted: Normal, Open: Alarm |

Either pair can be used depending on the logic requirement for the relay monitoring system.
Use the provided 3P terminal plug for signal wiring and plug into the contacts.

## Alarm Events

- Input power failure
- Specific port link down (The specific ports can be configured by software.)
- OPA alarm if optical power is higher than a upper limit setting or lower than a lower limit setting

Note: Be sure the voltage applied on the contacts is within the specification of $30 \mathrm{VDC/1A}$ max. or $120 \mathrm{VAC} / 0.5 \mathrm{~A}$ max.

### 2.7 Reset Button

The reset button is used to perform a reset to the switch. It is not used in normal cases and can be used for diagnostic purposes. If any network problem is suspected, it is useful to push the button to reset the switch without turning off the power. Check whether the network is recovered.


The button can also be used to restore the software configuration settings to factory default values.

The operations are:

| Operation | Function |
| :--- | :--- |
| Press the button and release during switch operation | Reset \& boot up the switch. <br> The boot-up takes about 20 seconds and ends with all <br> LED showing yellow ON and green ON once. |
| Press the button until all LED show yellow ON and <br> green ON. | Boot \& restore all factory default settings |

### 2.8 Establishing UTP Connections

The 10/100/1000 RJ-45 copper ports support the following connection types and distances:

## Network Cables

10BASE-T: 2-pair UTP Cat. 3, 4, 5 , EIA/TIA-568B 100-ohm
100BASE-TX: 2-pair UTP Cat. 5, EIA/TIA-568B 100-ohm
1000BASE-T: 4-pair UTP Cat. 5 or higher (Cat.5e is recommended), EIA/TIA-568B 100-ohm
Link distance: Up to 100 meters for all above

## Auto MDI/MDI-X Function

This function allows the port to auto-detect the twisted-pair signals and adapts itself to form a valid MDI to MDIX connection with the remote connected device automatically. No matter if a straight through cable or crossover cable is connected, the ports can sense the receiving pair automatically and configure itself to match the rule for MDI to MDI-X connection. It simplifies the cable installation.

## Auto-negotiation Function

The ports are featured with auto-negotiation function and full capability to support connection to any Ethernet devices. The port performs a negotiation process for the speed and duplex configuration with the connected device automatically when each time a link is being established. If the connected device is also auto-negotiation capable, both devices will come out the best configuration after negotiation process. If the connected device is incapable in auto-negotiation, the switch will sense the speed and use half duplex for the connection.

## Port Configuration Management

For making proper connection to an auto-negotiation incapable device, it is suggested to use port control function via software management to set forced mode and specify speed and duplex mode which match the configuration used by the connected device.

### 2.9 Establishing a Fiber Connection

The dual-speed SFP slots, Port 9 and Port 10 must be installed with an SFP fiber transceiver for establishing a fiber connection.


Types of the SFP Fiber transceivers supported:
1000Mbps based 1000BASE-X SFP transceivers
100 Mbps based 100BASE-FX SFP transceivers

## Installing SFP Fiber Transceiver

To install an SFP fiber transceiver into SFP slot, the steps are:

1. Turn off the power of the switch.
2. Insert the SFP fiber transceiver into the SFP slot. Normally, a bracket is provided for every SFP transceiver. Hold the bracket and insert.
3. Until the SFP transceiver is seated securely in the slot, place the bracket in lock position.

## Connecting Fiber Cables

LC connectors are commonly equipped on most SFP transceivers. Identify the TX and the RX connector before establishing a cable connection. The following figure illustrates a connection example between two fiber ports:


Make sure the RX-to-TX connection rule is followed on both ends of the fiber cable.

## Network Cables

Multimode (MMF) - 50/125, 62.5/125
Single mode (SMF) - 9/125

## Port Speed Configuration

There are three options for configuring the port speed via software for SFP Port 9 and Port 10 . The options are:

| Port Mode | Description |
| :--- | :--- |
| Auto | Auto-detection for the type of the installed SFP transceiver by reading DDM data <br> 100 Mbps transceiver: Non-auto-negotiation (forced), 100Mbps, full duplex <br> 1000 Mbps transceiver: Auto-negotiation, 1000Mbps, full duplex |
| 100Mbps FDX | Non-auto-negotiation (forced), 100Mbps, full duplex |
| 1Gbps FDX | Auto-negotiation, 1000Mbps, full duplex |

### 2.10 Establishing PoE PSE Connections

This section describes how to make a connection between a PSE port and a PoE Powered device (PD). All copper ports are equipped with PoE PSE function. The ports are enabled to deliver power together with the network signal to a connected powered device via a Cat. 5 cable or higher. To establish a PoE connection, the connected PoE PD must be an IEEE 802.3at or IEEE 802.3af-compliant device for safety reason. Incompliant devices are not supported by the PoE switch model.

## RJ-45 Pin Assignments of PSE Port

| Pin | PoE power | 1Gbps LAN signal | 100Mbps LAN signal |
| :---: | :---: | :---: | :---: |
| $\mathbf{1}$ |  | BI_DB+ | RX + |
| $\mathbf{2}$ |  | BI_DB- | RX- |
| $\mathbf{3}$ |  | BI_DA+ | TX+ |
| $\mathbf{4}$ | V $_{\text {poe }}+$ | BI_DD + | - |
| $\mathbf{5}$ | V $_{\text {poe }^{+}}$ | BI_DD- | - |
| $\mathbf{6}$ |  | BI_DA- | RX- |
| $\mathbf{7}$ | $\mathrm{V}_{\text {poe }^{-}}$ | BI_DC + | - |
| $\mathbf{8}$ | $\mathrm{V}_{\text {poe }}-$ | BI_DC- | - |

The PSE ports are equipped with the following capabilities:

1. Detection for an IEEE 802.3af /802.3at compliant PD.
2. No power is supplied to a device which is classified non-IEEE 802.3af/at compliant PD
3. No power is supplied when no connection exists on the port.
4. The power is cut off immediately from powering condition when a disconnection occurs.
5. The power is cut off immediately from powering condition when overload occurs.

6 . The power is cut off immediately from powering condition when over-current occurs.
7. The power is cut off immediately from powering condition when short circuit condition occurs.

Connection example:


### 2.11 LED Indication

| LED | Function | Color | State | Interpretation |
| :---: | :---: | :---: | :---: | :---: |
| PWR | Power <br> status | Green | ON | The power is supplied to the switch. |
|  |  |  | OFF | The power is not supplied to the switch. |
| Mgt | Management status | Green | OFF | The switch is in initialization and diagnostics. |
|  |  | Yellow | BLINK | Initialization completed with diagnostic error or system error found during normal operation |
|  |  | Green | ON | Initialization completed with no error |
| Port1 ~ Port 8 |  |  |  |  |
| SPEED_LED | Port speed status | Green | ON | Speed is 1000 Mbps . |
|  |  | Yellow | ON | Speed is 10 Mbps or 100 Mbps . |
|  |  |  | BLINK | PoE power is on. |
| LINK_LED | Port link status | Green | ON | Port link is established. (No traffic) |
|  |  | Green | BLINK | Port link is up and there is traffic. |
|  |  |  | OFF | Port link is down. |
| Port 9, Port 10 |  |  |  |  |
| Speed_LED | Port speed/link status | Green | ON | A 1000 Mbps link is established. |
|  |  | Yellow | ON | A 100Mbps link is established. |
|  |  |  | BLINK | Activity status |
|  |  |  | OFF | Port link is down. |

### 2.12 Establishing a Console Connection



The connector designed for the console port is RJ-45.

Pin Assignments

| Pin | RS-232 signals | IN/OUT |
| :--- | :--- | :--- |
| $1,2,7,8$ | NC |  |
| 3 | RxD | IN |
| 6 | TxD | OUT |
| 4,5 | GND |  |

## Baud Rate information

Baud rate - 115200
Data bits - 8
Parity - None
Stop bit - 1
Flow control - None

## 3. Management of the Switch

The switch provides the following methods to configure and monitor the switch as follows:

- Making out of band Telnet CLI management via the console port
- Making in-band management via telnet CLI over TCP/IP network
- Making in-band management via web interface over TCP/IP network
- Making in-band SNMP management over TCP/IP network


### 3.1 IP Address \& Password

The IP Address is an identification of the switch in a TCP/IP network. Each switch should be designated a new and unique IP address in the network. The switch is shipped with the following factory default settings for software management:

Default IP address of the switch: 192.168.0.2 / 255.255.255.0

The switch uses local authentication instead of RADIUS authentication with factory defaults.
Fixed Username: admin
Default password:

No password is required with factory default. However, the password is used for local authentication in accessing to the switch via console, Telnet and HTTP web-based interface. For security reason, it is recommended to change the default settings for the switch before deploying it to your network.

### 3.2 Configuring IP Address \& Password via console and telnet

[IP Address] setting command is in IP command group.
$>I P$ Setup [<ip_addr>] [<ip_mask>] [<ip_router $>$ ] [<vid>]

## Parameters:

$<$ ip_addr $>\quad:$ IP address (a.b.c.d)
<ip_mask> : IPv4 subnet mask (a.b.c.d)
$<$ ip_router $>\quad: I P v 4$ router (a.b.c.d)
$<$ vid $>\quad: V L A N I D(1-4095)$
[IPv6 Address] setting command is also in IP command group.
$>$ IP IPv6 Setup [<ipv6_addr>] [<ipv6_prefix>] [<ipv6_router>]

## Parameters:

$\begin{array}{ll}\text { <ipv6_addr }> & : \text { IPv6 address is in 128-bit records represented as eight fields of up to four hexadecimal } \\ & \text { digits with a colon separates each field (:). } \\ \text { <ipv6_prefix }> & : \text { IPv6 subnet mask } \\ \text { <ipv6_router> } & : \text { IPv6 router }\end{array}$
[Password] setting command is also in Security/Switch/Users command group.

## Security Switch Users Configuration

Security Switch Users Add <user_name> <password> <privilege_level>
Security Switch Users Delete <user_name>

Refer to "Operation manual for telnet and console management".

### 3.3 Configuring IP Address via Web Interface

## Start Web Browser

Start your browser software and enter the default IP address of the switch unit to which you want to connect. The IP address is used as URL for the browser software to search the device.

```
URL: http:/192.168.0.2/
```


## Login to Switch Unit

When browser software connects to the switch unit successfully, a Login screen is provided for you to login to the device as the left display below:


Enter the following default values in the login page:
Default username: admin
Default password: ,

No password is required.
Click $\square$ to login into the switch.

Web Page after a Successful Login


Select [Configuration] -> [System] -> [IP] to configure IP address
IP Configuration

|  | Configured | Current |
| :--- | :--- | :--- |
| DHCP Client | $\Gamma$ |  |
| IP Address | Renew |  |
| IP Mask | 252.168 .0 .179 |  |
| IP Router | 0.0 .0 .0 | 255.168 .0 .179 |
| VLAN ID | 1 | 0.0 .0 .0 |
| DNS Server | 0.0 .0 .0 | 1 |

## IP DNS Proxy Configuration

$\square$
DNS Proxy $\quad \Gamma$

Configuration
DHCP Client
IP Address
IP Mask
IP Router
VLAN ID
DNS Server
DNS Proxy

## Description

Enable the DHCP client by checking this box.
Provides the IP address of this switch unit.
Provides the IP mask of this switch unit.
Provides the IP address of the default router for this switch unit.
Provides the managed VLAN ID. The allowed range is 1 through 4095.
Provides the IP address of the DNS Server in dotted decimal notation.
When DNS proxy is enabled, DUT will relay DNS requests to the current configured
DNS server on DUT, and reply as a DNS resolver to the client device on the network.

| Save | Click to save the changes. |
| :--- | :--- | :--- |
| Reset | Click to undo any changes made locally and revert to previously saved values. |
| Renew | Click to renew DHCP. This button is only available if DHCP is enabled. |

### 3.4 Configuration for SNMP Management

The switch supports SNMP v1, SNMP v2c, and SNMP v3 management. Make sure the related settings are wellconfigured for the switch before you start the SNMP management from an SNMP manager.

## Using Telnet Interface

The following are available commands in Telnet SNMP command group to configure SNMP-related settings:

```
>SNMP Configuration
>SNMP Mode [enable|disable]
>SNMP Version [1|2c|3]
>SNMP Read Community [<community>]
>SNMP Write Community [<community>]
>SNMP Trap Mode [enable|disable]
>SNMP Trap Version [1 |2c|3]
>SNMP Trap Community [<community>]
>SNMP Trap Destination [<ip_addr_string>]
>SNMP Trap IPv6 Destination [<ipv6_addr>]
>SNMP Trap Authentication Failure [enable \disable]
>SNMP Trap Link-up [enable|disable]
>SNMP Trap Inform Mode [enable|disable]
>SNMP Trap Inform Timeout [<timeout>]
>SNMP Trap Inform Retry Times [<retries>]
>SNMP Trap Probe Security Engine ID [enable\disable]
>SNMP Trap Security Engine ID [<engineid>]
>SNMP Trap Security Name [<security_name>]
>SNMP Engine ID [<engineid>]
>SNMP Community Add <community> [<ip_addr>] [<ip_mask>]
>SNMP Community Delete <index>
>SNMP Community Lookup [<index>]
>SNMP User Add <engineid> <user_name> [MD5\SHA] [<auth_password>] [DES] [<priv password>]
>SNMP User Delete <index>
>SNMP User Changekey <engineid> <user_name> <auth_password> [<priv_password>]
>SNMP User Lookup [<index>]
>SNMP Group Add <security_model> <security_name> <group_name>
>SNMP Group Delete <index>
>SNMP Group Lookup [<index>]
>SNMP View Add <view_name> [included|excluded] <oid_subtree>
```

>SNMP View Delete <index>
$>$ SNMP View Lookup [<index>]
$>S N M P$ Access Add < group_name $><$ security_model $><$ security_level $>$ [<read_view_name>] [<write_view_name $>$ ]
$>$ SNMP Access Delete <index>
$>$ SNMP Access Lookup [<index>]

## Using Web Interface

Select [Configuration] -> [Security] -> [SNMP]:

The commands supports configuration for:

- Basic system configuration for SNMP v1 and SNMP v2c
- Basic system configuration for SNMP v1 trap, SNMP v2c trap and SNMP v3 trap
- Communities that permit to access to SNMPv3 agent
- USM (User-based Security Model) user table for SNMPv3
- VACM (View-based Access Control Model) Viewer table for SNMPv3
- Group table for SNMPv3
- Accesses group table for SNMPv3


### 3.5 SNMP MIBs

The switch provides the following SNMP MIBs:

- RFC 1213 - MIB II
- RFC 2674 - QBridge MIB (VLAN MIB)
- RFC 2819 - RMON (Group 1, 2.3 \& 9)
- RFC 2863 - Interface Group (IF) MIB
- RFC 3411 - SNMP Management Frameworks
- RFC 3414 - User Based Security Model (USM)
- RFC 3415 - View Based Access Control Model (VACM)
- RFC 3621 - Power Ethernet MIB
- RFC 3635 - EtherLike MIB
- RFC 3636-802.3 Medium Attachment Units (MAUs) MIB
- RFC 4133 - Entity MIB
- RFC 4188 - Bridge MIB
- RFC 4668 - RADIUS Authentication Client MIB
- RFC 5519 - Multicast Group Membership Discovery (MGMD) MIB
- IEEE 802.1 MSTP MIB
- IEEE 802.1AB LLDP MIB
- IEEE 802.1X Port Access Entity (PAE) MIB
- TIA 1057 LLDP Media Endpoint Discovery (MED) MIB
- IEEE 802.1-Q-BRIDGE MIB
- Private SFPDDM MIB (Read DDM status of the SFP ports)
- Private reboot MIB (Remote boot over SNMP)
- Private TFTP firmware update MIB (TFTP Firmware update over SNMP)
- Private OPA function MIB (OPA configuration for the SFP ports)
- Private ALS function MIB (ALS configuration for the SFP ports)

One product MIB file is also available in the product CD for SNMP manager software.

### 3.5.1 SNMP Traps

In addition to the SNMP standard traps, the device is equipped with private OPA alarm traps.

The traps are:

- Alarm trap - Port TX power lower than the minimal value
- Alarm trap - Port TX power higher than the maximal value
- Normal trap - Port TX power back to normal (higher than the minimal value)
- Normal trap - Port TX power back to normal (lower than the maximal value)


## 4. Redundant Ring Applications

### 4.1 Auto Multi-Ring Technology

Auto Multi-Ring Technology was developed especially for switches connected in ring topology which needs redundant support when any failure occurs in ring. For large network, more than one ring connections are very common. Auto Multi-Ring Technology implementation can support more than one ring connection within a switch. It is also able to work with RSTP support concurrently in the switch.

## Some basic information is:

- Supports up to five rings in one switch
- Supports up to 30 member switches in one ring
- Provides fast response time than RSTP protocol
- Works with RSTP protocol concurrently within one switch

The following figure illustrates a configuration that three redundant rings and one RSTP ring hook on a main redundant ring. Some switches support two redundant rings concurrently.


The following figure shows one switch is configured to support three redundant rings and one RSTP ring at the same time.


### 4.2 Redundant Ring Applications with industrial standard RSTP protocol

It also can be done to support a ring connection using industrial standard RSTP function and establish a backup path. In case that any link failure occurs, the backup path can link up immediately to recover the network operation.

